

 Navigation

 	
 index

 	
 next |

 	Casbah (MongoDB + Scala Toolkit Documentation v2.1.5 documentation

Welcome to the Casbah documentation

Welcome to the Casbah Documentation. Casbah is a Scala toolkit for MongoDB—We use the term “toolkit” rather than “driver”, as Casbah integrates a layer on top of the official mongo-java-driver [http://github.com/mongodb/mongo-java-driver] for better integration with Scala. This is as opposed to a native implementation of the MongoDB wire protocol, which the Java driver does exceptionally well. Rather than a complete rewrite, Casbah uses implicits, and Pimp My Library code to enhance the existing Java code.

Casbah’s approach is intended to add fluid, Scala-friendly syntax on top of MongoDB and handle conversions of common types. If you try to save a Scala List or Seq to MongoDB, we automatically convert it to a type the Java driver can serialize. If you read a Java type, we convert it to a comparable Scala type before it hits your code. All of this is intended to let you focus on writing the best possible Scala code using Scala idioms. A great deal of effort is put into providing you the functional and implicit conversion tools you’ve come to expect from Scala, with the power and flexibility of MongoDB.

Casbah provides improved interfaces to GridFS, Map/Reduce and the core Mongo APIs. It also provides a fluid query syntax which emulates an internal DSL and allows you to write code which looks like what you might write in the JS Shell. There is also support for easily adding new serialization/deserialization mechanisms for common data types (including Joda Time, if you so choose; with some caveats - See the GridFS Section).

With version 2.0, Casbah has become an official MongoDB project and will continue to improve the interaction of Scala + MongoDB. Casbah aims to remain fully compatible with the existing Java driver—it does not talk to MongoDB directly, preferring to wrap the Java code. This means you shouldn’t see any wildly unexpected behavior from the underlying Mongo interfaces when a data bug is fixed.

The ScalaDocs for Casbah [http://api.mongodb.org/scala/casbah/2.1.5.0/scaladoc/] along with SXR cross referenced source are available at the MongoDB API site [http://api.mongodb.org].

You may also download this documentation in other formats.

	ePub [http://api.mongodb.org/scala/casbah/2.1.5.0/CasbahDocumentation.epub]

	PDF [http://api.mongodb.org/scala/casbah/2.1.5.0/CasbahDocumentation.pdf]

	API Docs [http://api.mongodb.org/scala/casbah/2.1.5.0/scaladoc/]

	1. Getting Started
	1.1. Installing & Setting up Casbah
	1.1.1. Setting up without a Dependency/Build Manager (Source + Binary)

	1.1.2. Using Dependency/Build Managers

	1.1.3. Setting Up Maven

	1.1.4. Setting Up Ivy (w/ Ant)

	1.1.5. Setting up SBT

	1.2. Migrating to Casbah 2.x from Casbah 1.x
	1.2.1. Base Package Name

	1.2.2. Removed Features

	1.2.3. New Features

	1.2.4. General Code Cleanup

	1.2.5. Casbah Modules

	1.3. 2.1.5.0 / 2011-05-26

	1.4. 2.1.2 / 2011-04-09

	1.5. 2.1.1 / 2011-03-29

	1.6. 2.1.0 / 2011-03-15

	1.7. 2.0.2 / 2011-01-25

	1.8. Casbah 2.0.1 / 2011-01-04

	1.9. 2.0 / 2011-01-03

	2. Tutorial: Using Casbah
	2.1. Import the Driver

	2.2. Briefly: Automatic Type Conversions
	2.2.1. Wrappers

	2.2.2. Connecting to MongoDB

	2.2.3. Working with Collections

	2.2.4. MongoDBObject - A Scala-ble DBObject Implementation

	2.2.5. MongoDBList - Mongo-friendly List implementation

	2.2.6. Querying with Casbah

	2.2.7. GridFS with Casbah

 Copyright 2010, 2011 10gen, Inc..
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Casbah (MongoDB + Scala Toolkit Documentation v2.1.5 documentation

1. Getting Started

1.1. Installing & Setting up Casbah

You should have MongoDB [http://mongodb.org] setup and running on your machine (these docs assume you are running on localhost on the default port of 27017) before proceeding. If you need help setting up MongoDB please see the MongoDB quickstart install documentation [http://www.mongodb.org/display/DOCS/Quickstart].

To start with, you need to either download the latest Casbah driver and place it in your classpath, or set it up in the dependency manager/build tool of your choice (The authors highly recommend the Scala simple-build-tool [http://code.google.com/p/simple-build-tool/] - it makes Scala development easy).

1.1.1. Setting up without a Dependency/Build Manager (Source + Binary)

The latest build as of May 26, 2011 is 2.1.5, cross-built for both Scala 2.8.0 (final) and Scala 2.8.1 (final).

The builds are published to the Scala-tools.org [http://scala-tools.org] Maven repositories and should be easily available to add to an existing Scala project.

You can always get the latest source for Casbah from the github repository [https://github.com/mongodb/casbah]:

$ git clone git://github.com/mongodb/casbah

	PLEASE NOTE: As of the 2.0 release, Casbah has been broken into

	several modules which can be used to strip down which features you need. For example, you can use the Query DSL independent of the GridFS implementation if you wish. The following dependency manager information uses the master artifact which downloads and uses all of Casbah’s modules by default.

1.1.2. Using Dependency/Build Managers

First, you should add the package repository to your Dependency/Build Manager. Our releases & snapshots are currently hosted at:

http://scala-tools.org/repo-releases/ /* For Releases */
http://scala-tools.org/repo-snapshots/ /* For snapshots */

Set both of these repositories up in the appropriate manner - they contain Casbah as well as any specific dependencies you may require. (SBT users note that Scala-Tools is builtin to SBT as most Scala projects publish there)

1.1.3. Setting Up Maven

You can add Casbah to Maven with the following dependency block.

Scala 2.8.0 users:

<dependency>
 <groupId>com.mongodb.casbah</groupId>
 <artifactId>casbah_2.8.0</artifactId>
 <version>2.1.5.0</version>
<dependency>

Scala 2.8.1 users:

<dependency>
 <groupId>com.mongodb.casbah</groupId>
 <artifactId>casbah_2.8.1</artifactId>
 <version>2.1.5.0</version>
<dependency>

Scala 2.9.0.1 users (Scala 2.9.0.1 contains critical fixes against 2.9.0.final <http://www.scala-lang.org/node/9708>; do not use 2.9.0.final):

<dependency>
 <groupId>com.mongodb.casbah</groupId>
 <artifactId>casbah_2.9.0-1</artifactId>
 <version>2.1.5.0</version>
<dependency>

1.1.4. Setting Up Ivy (w/ Ant)

You can add Casbah to Ivy with the following dependency block.

Scala 2.8.0 users:

<dependency org="com.mongodb.casbah" name="casbah_2.8.0" rev="2.1.5.0"/>

Scala 2.8.1 users:

<dependency org="com.mongodb.casbah" name="casbah_2.8.1" rev="2.1.5.0"/>

Scala 2.9.0.1 users (Scala 2.9.0.1 contains critical fixes against 2.9.0.final <http://www.scala-lang.org/node/9708>; do not use 2.9.0.final):

<dependency org="com.mongodb.casbah" name="casbah_2.9.0-1" rev="2.1.5.0"/>

1.1.5. Setting up SBT

Finally, you can add Casbah to SBT by adding the following to your project file:

val casbah = "com.mongodb.casbah" %% "casbah" % "2.1.5.0"

The double percentages (%%) is not a typo—it tells SBT that the library is crossbuilt and to find the appropriate version for your project’s Scala version. If you prefer to be explicit you can use this instead:

// Scala 2.8.0
val casbah = "com.mongodb.casbah" % "casbah_2.8.0" % "2.1.5.0"
// Scala 2.8.1
val casbah = "com.mongodb.casbah" % "casbah_2.8.1" % "2.1.5.0"
// Scala 2.9.0.1 (don't use Scala 2.9.0.final; 2.9.0.1 contains critical fixes)
val casbah = "com.mongodb.casbah" % "casbah_2.9.0-1" % "2.1.5.0"

Don’t forget to reload the project and run sbt update afterwards to download the dependencies (SBT doesn’t check every build like Maven).

1.2. Migrating to Casbah 2.x from Casbah 1.x

If you used Casbah before, and are looking to migrate from Casbah 1.x to Casbah 2.x
there are some things which have changed and you should be aware of to effectively update your code.

1.2.1. Base Package Name

For starters, the base package has changed. The now abandoned 1.1.x branch which
became 2.0 was already doing a package change, and with 2.0 Casbah has become a
supported MongoDB project. As a result, Casbah’s package has changed for the 2.0
release and you will need to update your code accordingly:

	Casbah 1.0.x
	Casbah 1.1.x (never released)
	Casbah 2.0

	com.novus.casbah.mongodb
	com.novus.casbah
	com.mongodb.casbah

1.2.2. Removed Features

A number of features existed in Casbah as artifacts of early prototyping. They were buggy, poorly tested and because of their nature often introduced weird problems for users.

As a result, they have been removed now that replacement versions of their functionality exist.

1.2.2.1. Removal of Implicit Tuple -> DBObject Conversions

Previously, it was possible with Casbah to cast Tuples to DBObject [http://dochub.mongodb.org/core/DBObject]:

val x: DBObject = ("foo" -> "bar", "x" -> 5, "y" -> 238.1)

This feature was provided by implicit conversions which attempt to target Product which is the base class of all Tuples. Unfortunately, this functionality was often unreliable and targeted the wrong things for conversion (Such as instances of Option[_]). After a lot of evaluation and attempts to create a better approach a decision was made to remove this feature. Casbah 2.0 includes wrappers for DBObject [http://dochub.mongodb.org/core/DBObject] which follow Scala 2.8’s Collection interfaces including Scala compatible builders and constructors. As such, the same previous syntax is possible by passing the Tuple pairs to MongoDBObject.apply:

val x: DBObject = MongoDBObject("foo" -> "bar", "x" -> 5, "y" -> 238.1)
/* x: com.mongodb.casbah.Imports.DBObject = { "foo" : "bar" , "x" : 5 , "y" : 238.1} */
val y = MongoDBObject("foo" -> "bar", "x" -> 5, "y" -> 238.1)
/* y: com.mongodb.casbah.commons.Imports.DBObject = { "foo" : "bar" , "x" : 5 , "y" : 238.1} */

We also provide a builder pattern which follows Scala 2.8’s Map Builder:

val b = MongoDBObject.newBuilder
/* b: com.mongodb.casbah.commons.MongoDBObjectBuilder = com.mongodb.casbah.commons.MongoDBObjectBuilder@113f25e3 */
b += "x" -> 5
b += "y" -> 238.1
b += "foo" -> "bar"
val x: DBObject = b.result
/* x: com.mongodb.casbah.commons.Imports.DBObject = { "x" : 5 , "y" : 238.1 , "foo" : "bar"} */

Finally, any Scala map can still be cast to a DBObject without issue:

val x: DBObject = Map("foo" -> "bar", "x" -> 5, "y" -> 238.1)
/* x: com.mongodb.casbah.Imports.DBObject = { "foo" : "bar" , "x" : 5 , "y" : 238.1} */

It is still possible to use Tuples in the Query DSL however, as there is less need for broad implicit conversions to accomplish that functionality.

1.2.2.2. batchSafely Removed

Casbah 1.1.x introduced a batchSafely command which used the Java Driver’s requestStart(), requestDone() and getPrevErrors() functions. MongoDB is deprecating the use of getPrevErrors() and as such, Casbah has removed the functionality in anticipation of that feature going away in a near future release.

1.2.3. New Features

1.2.3.1. Query DSL Operators

Casbah previously lagged behind the official MongoDB server in supported Query DSL $ Operators. As of 2.0, all $ Operators currently documented as supported in MongoDB are provided. A list of some of the new operators added in 2.0 include:

	$slice [http://dochub.mongodb.org/core/$slice]

	$or [http://dochub.mongodb.org/core/$or]

	$not [http://dochub.mongodb.org/core/$not]

	$each [http://dochub.mongodb.org/core/$each] (special operator only supported nested inside :dochub:`$addToSet`)

	$type [http://dochub.mongodb.org/core/$type] (Uses type arguments and class manifests to allow a nice fluid Scala syntax)

	$elemMatch [http://dochub.mongodb.org/core/$elemMatch]

	Array Operators

	All GeoSpatial Operators including $near [http://dochub.mongodb.org/core/$near] and $within [http://dochub.mongodb.org/core/$within]

Further, the DSL system has been completely overhauled. As part of adding test coverage a number of edge cases were discovered with the DSL that caused inconsistent behavior. The majority of the Query DSL should continue to work the same, but we have started moving to the use of Type Classes and Context Boundaries to limit what a valid input to any given operator is (2.1 will include expanded use of these merged with custom serializers).

1.2.3.1.1. New syntax for $not

In order to fix a number of bugs and readability issues with the $not [http://dochub.mongodb.org/core/$not] operator, it has been modified.

Previously, the correct syntax for using $not [http://dochub.mongodb.org/core/$not] was:

"foo".$not $gte 15 $lt 35.2 $ne 16

With Casbah 2.0, this syntax has been modified to be more clear to both the developer and the compiler:

"foo" $not { _ $gte 15 $lt 35.2 $ne 16 }

The same syntax is supported for the special version of $pull [http://dochub.mongodb.org/core/$pull] which allows for nested operator tests.

1.2.4. General Code Cleanup

There has been a lot of general code cleanup in this release and while many features appear the same externally they may have been refactored.

1.2.5. Casbah Modules

While Casbah has a large stable of features, some users (such as those using a framework like Lift which already provides MongoDB wrappers) wanted access to certain parts of Casbah without importing the whole system. As a result, Casbah has been broken out into several modules which make it easier to pick and choose the features you want.

If you use the individual modules you’ll need to use the import statement from each of these. If you use the import statement from the casbah-core module, everything except GridFS will be imported (not everyone uses GridFS so we don’t load it into memory & scope unless it is needed). The module names can be used to select which dependencies you want from maven/ivy/sbt, as we publish individual artifacts. If you import just casbah, this is a master pom which includes the whole system and can be used just like 1.1.x was (that is to say, you can pretend the module system doesn’t exist more or less).

This is the breakdown of dependencies and packages for the new system:

	Module
	Package
	Dependencies

	casbah-commons (“Commons”)

NOTES
Provides Scala-friendly
:dochub:DBObject & :dochub:DBList
implementations as well as Implicit
conversions for Scala types

	com.mongodb.casbah.commons
	mongo-java-driver,
scalaj-collection,
scalaj-time,
JodaTime,
slf4j-api

	casbah-query (“Query DSL”)

NOTES
Provides a Scala syntax enhancement
mode for creating MongoDB query
objects using an Internal DSL
supporting Mongo $ Operators

	com.mongodb.casbah.query
	casbah-commons
along with its dependencies transitively

	casbah-core (“Core”)

NOTES
Provides Scala-friendly
wrappers to the Java Driver for
connections, collections and
MapReduce jobs

	com.mongodb.casbah
	casbah-commons and casbah-query
along with their dependencies transitively

	casbah-gridfs (“GridFS”)

NOTES
Provides Scala enhanced wrappers
to MongoDB’s GridFS filesystem

	com.mongodb.casbah.gridfs
	casbah-core and casbah-commons
along with their dependencies transitively

We cover the import of each module in their appropriate tutorials, but each module has its own Imports object which loads all of its necessary code. By way of example both of these statements would import the Query DSL:

// Imports core, which grabs everything including Query DSL
import com.mongodb.casbah.Imports._
// Imports just the Query DSL along with Commons and its dependencies
import com.mongodb.casbah.query.Imports._

The full set of changes between 1.0.x and 2.x:

1.3. 2.1.5.0 / 2011-05-26

	[2.9.0 only] Adjusted dynamic settings to build against 2.9.0-1 and Casbah 2.1.5.0

	[2.9.0 only] Prototype “Dynamic” module (You must enable Scala’s support for Dynamic)

	[2.9.0 only] I seem to have missed project files for SBT and casbah-dynamic

	[2.9.0 only] Tweaks and adjustments to get this building and testing solidly on 2.9.0-1

	Disabled a few tests that weren’t passing and known to be ‘buggy’ in specs1. These are fixed for the upcoming 2.2.0 release on specs2; they are test bugs rather than Casbah bugs.

	RegEx $not was just flat out wrong - was producing {“foo”: {“foo”: /<regex>/}} instead of {“foo”: {“$not”: {/<regex>/}}

	Added a getAsOrElse method

1.4. 2.1.2 / 2011-04-09

	SCALA-28 Updated Java Driver to Release 2.5.3
+ JAVA-315 several exception cases do not put back the dbport in pool, resulting in forever hanging pool to that server
+ JAVA-312 Added UUID support to JSON Serialization
+ JAVA-318 Fixed JMX issues for similar ServerAddresses

	SCALA-27 Properly Serialize Option[T] so that None is null and Some expands out

	SCALA-26: findOneByID(id) and findOneById(id, fields) had different casing; when findOneById(id, fields) was called as byID an implicit caused the single arg version to be called instead, yielding unexpected results.

1.5. 2.1.1 / 2011-03-29

	SCALA-25 Added support for $bit operator, with and and or options

	Updated to Java Driver 2.5.2 (Bugfixes)
+ JAVA-301 - Replicaset w/ auth warnings too verbose when not authd against local/admin db
+ JAVA-304 - Problem with closing cursors - killCursors

1.6. 2.1.0 / 2011-03-15

	SCALA-22 Added a dropTarget boolean option to rename collection, which specifies behavior if named target collection already exists, proxies JAVA-238

	Removed resetIndexCache, which has also been removed from the Java Driver

	SCALA-21 Added “set metadata” method to match Java Driver (See Java-261)

	SCALA-20 Updated to Java Driver 2.5
+ See Release Notes: http://groups.google.com/group/mongodb-user/browse_thread/thread/a693ad4fdf9c3731/931f46f7213b6775?show_docid=931f46f7213b6775

	SCALA-21 - Update GridFS to use DBObject views. Holding back full bugfix until we have a 2.5 build to link against

	Example adjustments to filter by start time and namespace

	SCALA-10 - And this is why we unit test. Size was returning empty for cursor based results as it wasn’t pulling the right value. Fixed, calling cursor.size.

	Added an alternative object construction method for MongoDBObject with a list of pairs, rather than varargs [philwills]

	Making scaladoc for MongoURI more explicit. Note that the wiki markup for lists isn’t actually implemented in scaladoc yet. [philwills]

	Refactor Collection and Cursors using Abstract types, explicit ‘DBObject’ version is always returned from DB, Collection etc now. Those wanting to use typed versions must code the flip around by hand. !!! BREAKING CHANGE, SEE CODE / EXAMPLES

	SCALA-10 Updated MapReduce interfaces to finish 1.8 compatibility
+ Renamed MapReduceError to MapReduceException; MapReduceError is a non exception which represents a failed job
+ Changed MapReduceResult to automatically proxy ‘results’ in inline result sets

	Added missing methods to GridFSDBFile necessary to access the underlying datastream

	Fixed setter/getter of option on cursor

	For several reasons changed backing trait of DBList PML from Buffer to LinearSeq

	Moved to new MapReduce functionality based on MongoDB 1.7.4+ !!! You must now specify an output mode.
+ See http://blog.evilmonkeylabs.com/2011/01/27/MongoDB-1_8-MapReduce/

	MapReduce failures shouldn’t throw Error which can crash the runtime

	New MapReduceSpec updates to include tests against new MongoDB MapReduce logic

1.7. 2.0.2 / 2011-01-25

	Fixed the MongoDBOBject ‘as’ operator to return the proper type, instead of Any. (philwills)

1.8. Casbah 2.0.1 / 2011-01-04

	SCALA-16: Added a few additional validation tests against getAs and as on MongoDBObject

	SCALA-17 - Fixed syntax of $within and its nested operators, unit test passes

1.9. 2.0 / 2011-01-03

Notable Changes since Casbah 1.0.8.1:

	
	Ownership Change: Casbah is now an officially supported MongoDB Driver

	
	All bugs should be reported at http://jira.mongodb.org/browse/SCALA

	Package Change: Casbah is now com.mongodb.casbah (See migration guide)

	Documentation (ScalaDocs, Migration Guide & Tutorial) is available at http://api.mongodb.org/scala/casbah

	Casbah is now broken into several submodules - see http://api.mongodb.org/scala/casbah/migrating.html

	Casbah releases are now published to http://scala-tools.org

	SBT Build now publishes -sources and -javadoc artifacts

	Added heavy test coverage

	++ additivity operator on MongoDBObject for lists of tuple pairs

	
	Updates to Java Driver wrappings

	
	Casbah now wraps Java Driver 2.4 and fully supports all options & interfaces including Replica Set and Write Concern support

	added a WriteConcern helper object for Scala users w/ named & default args

	added findAndModify / findAndRemove

	Stripped out support for implicit Product/Tuple conversions as they’re buggy as hell and constantly interfere with other code.

	
	Migrated Conversions code from core to commons, repackaging as com.mongodb.casbah.commons.conversions

	
	Moved loading of ConversionHelpers from Connection creation to instantiation of Commons’ Implicits (This means conversions are ALWAYS loaded now for everyone)

	
	Switched off of configgy to slf4j as akka did

	
	Added SLF4J-JCL Bindings as a +test* dependency (so we can print logging while testing without forcing you to use an slf4j implementation yourself)

	Moved Logger from core to commons

	
	Massive improvements to Query DSL:

	
	Added new implementations of $in, $nin, $all and $mod with tests. $mod now accepts non-Int numerics and aof two differing types.

	Full test coverage on DSL (and heavy coverage on other modules)

	Migrated $each to a now functioning internal hook on $addToSet only exposed in certain circumstances

	Various cleanups to Type constraints in Query DSL

	Full support for all documented MongoDB query operators

	Added new $not syntax, along with identical support for nested queries in $pull

	Valid Date and Numeric Type boundaries introduced and used instead of Numeric (since Char doesn’t actually workwith Mongo and you can’t double up type bounds)

	Added full support for geospatial query.

	Resolved an issue where the $or wasn’t being broken into individual documents as expected.

	DSL Operators now return DBObjects rather than Product/Tuple (massive fixes to compatibility and performance result)

	Added @see linkage to each core operator’s doc page

	
	GridFS Changes:

	
	GridFS’ `files’ now returned a MongoCursor not a raw Java DBCursor

	GridFS findOne now returns an Option[_] and detects nulls like Collection

	
	Added “safely” resource loaning methods on Collection & DB

	
	Given an operation, uses write concern / durability on a single connection and throws an exception if anything goes wrong.

	Culled casbah-mapper. Mapper now lives as an independent project at http://github.com/maxaf/casbah-mapper

	Bumped version of scala-time to the 0.2 release

	Added DBList support via MongoDBList, following 2.8 collections

	Adjusted boundaries on getAs and expand; the view-permitting Any was causing ambiguity issues at runtime with non AnyRefs (e.g. AnyVal).

	Fixed an assumption in expand which could cause runtime failure
* Updated MongoDBObject factory & builder to explicitly return a type; some pieces were assuming at runtime that it was a MongoDBObjectBuilder$anon1 which was FUBAR

 Copyright 2010, 2011 10gen, Inc..
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 previous |

 	Casbah (MongoDB + Scala Toolkit Documentation v2.1.5 documentation

2. Tutorial: Using Casbah

2.1. Import the Driver

Now that you’ve added Casbah to your project, it should be available for import. For this tutorial, we’re going to import the Core module which brings in all of Casbah’s functionality (except GridFS) As of this writing, Core lives in the package namespace com.mongodb.casbah. Casbah uses a few tricks to act as self contained as possible - it provides an Imports object which automatically imports everything you need including Implicit conversions and type aliases to a few common MongoDB types. This means you should only need to use our Imports package for the majority of your work. The Imports call will make common types such as DBObject, MongoConnection and MongoCollection available. Core‘s Imports also run the imports from Commons and the Query DSL. Let’s start out bringing it into your code; at the appropriate place (Be it inside a class/def/object or at the top of your file), add our import:

import com.mongodb.casbah.Imports._

That’s it. Most of what you need to work with Casbah is now at hand. .. If you want to know what’s going on inside the Imports._ take a look at Implicits.scala [http://api.mongodb.org/scala/casbah/2.1.5.0/scaladoc/casbah-core/sxr/Implicits.scala.html] which defines it.

2.2. Briefly: Automatic Type Conversions

As we mentioned, as soon as you construct a MongoConnection object, a few type conversions will be loaded automatically for you - Scala’s builtin regular expressions (e.g. "\\d{4}-\\d{2}-\\d{2}".r will now serialize to MongoDB automatically with no work from you), as well as a few other things. The general idea is that common Java types (such as ArrayList) will be returned as the equivalent Scala type.

As many Scala developers tend to prefer Joda time [http://joda-time.sourceforge.net/] over JDK Dates, you can also explicitly enable serialization and deserialization of them (w/ full support for the Scala-Time wrappers [http://github.com/jorgeortiz85/scala-time]) by an explicit call:

import com.mongodb.casbah.conversions.scala._
RegisterJodaTimeConversionHelpers()

Once these are loaded, Joda Time (and Scala Time wrappers) will be saved to MongoDB as proper BSON Dates, and on retrieval/deserialization all BSON Dates will be returned as Joda DateTime instead of a JDK Date (aka java.util.Date). Because this can cause problems in some instances, you can explicitly unload the Joda Time helpers:

import com.mongodb.casbah.conversions.scala._
DeregisterJodaTimeConversionHelpers()

And reload them later as needed. If you find you need to unload the other helpers as well, you can load and unload them just as easily:

import com.mongodb.casbah.conversions.scala._
DeregisterConversionHelpers()
RegisterConversionHelpers()

It is also possible to create your own custom type serializers and deserializers. See Custom Serializers and Deserializers.

2.2.1. Wrappers

Casbah provides a series of wrapper classes (and in some cases, companion objects) which proxy the “core” Java driver classes to provide scala functionality. In general, we’ve provided a “Scala-esque” wrapper to the MongoDB Java objects whereever possible. These make sure to make iterable things Iterable, Cursors implement Iterator, DBObjects act like Scala Maps, etc.

2.2.2. Connecting to MongoDB

The core Connection class as you may have noted above is com.mongodb.casbah.MongoConnection. There are two ways to create an instance of it. First, you can invoke .asScala from a MongoDB builtin Connection (com.mongodb.Mongo). This method is provided via implicits. The pure Scala way to do it is to invoke one of the apply methods on the companion object:

// Connect to default - localhost, 27017
val mongoConn = MongoConnection()
// mongoConn: com.mongodb.casbah.MongoConnection

// connect to "mongodb01" host, default port
val mongoConn = MongoConnection("mongodb01")
// mongoConn: com.mongodb.casbah.MongoConnection

// connect to "mongodb02" host, port 42017
val mongoConn = MongoConnection("mongodb02", 42017)
// mongoConn: com.mongodb.casbah.MongoConnection

If you imported Imports._, you already have MongoConnection in scope and won’t require additional importing. These all return an instance of the MongoConnection class, which provides all the methods as the Java Mongo class it proxies (which is available from the underlying attribute, incidentally) with the addition of having an apply method for getting a DB instead of calling getDB():

val mongoDB = mongoConn("casbah_test")
// mongoDB: com.mongodb.casbah.MongoDB = casbah_test

This should allow a more fluid Syntax to working with Mongo. The DB object also provides an apply() for getting Collections so you can freely chain them:

val mongoColl = mongoConn("casbah_test")("test_data")
// mongoColl: com.mongodb.casbah.MongoCollection = MongoCollection()

2.2.3. Working with Collections

Feel free to explore Casbah’s MongoDB object on your own; for now let’s focus on MongoCollection.

It should be noted that Casbah’s MongoCollection object implements Scala’s Iterable[A] [http://www.scala-lang.org/docu/files/api/scala/collection/Iterable.html] interface (specifically Iterable[DBObject]), which provides a full monadic interface to your MongoDB collection. Beginning iteration on the MongoCollection instance is fundamentally equivalent to invoking find on the MongoCollection (without a uqery). We’ll return to this after we discuss working with MongoDBObjects and inserting data...

2.2.4. MongoDBObject - A Scala-ble DBObject Implementation

As a Scala developer, I find it important to be given the opportunity to work consistently with my data and objects - and in proper Scala fashion. To that end, I’ve tried where possible to ensure Casbah provides Scala-ble (my phrasing fr the Scala equivalent of “Pythonic”) interfaces to MongoDB without disabling or hiding the Java equivalents. A big part of this is extending and enhancing Mongo’s DBObject and related classes to work in a Scala-ble fashion.

That is to say - DBObject, BasicDBOBject, BasicDBObjectBuilder, etc are still available - but there’s a better way. MongoDBObject and its companion trait (tacked in a few places implicitly via Pimp-My-Library) provide a series of ways to work with Mongo’s DBObjects which closely match the Collection interface Scala 2.8 provides. Further, MongoDBObject can be implicitly converted to a DBObject - so any existing Mongo Java code will accept it without complaint. There are two easy ways to create a new MongoDBObject. In an additive manner:

val newObj = MongoDBObject("foo" -> "bar",
 "x" -> "y",
 "pie" -> 3.14,
 "spam" -> "eggs")
/* newObj: com.mongodb.casbah.Imports.DBObject =
 { "foo" : "bar" , "x" : "y" , "pie" : 3.14 , "spam" : "eggs"} */

You should note the use of the -> there. You may recall that "foo" -> "bar" is the equivalent of ("foo", "bar"); however, the -> is a clear syntactic indicator to the reader that you’re working with Map-like objects. The explicit type annotation is there merely to demonstrate that it will happily return itself as a DBObject, should you so desire. (You should also be able to call the asDBObject method on it). However, in most cases this shouldn’t be necessary - the Casbah wrappers use View boundaries to allow you to implicitly recast as a proper DBObject. You could also use a Scala 2.8 style builder to create your object instead:

val builder = MongoDBObject.newBuilder
builder += "foo" -> "bar"
builder += "x" -> "y"
builder += ("pie" -> 3.14)
builder += ("spam" -> "eggs", "mmm" -> "bacon")
val newObj = builder.result
// newObj: com.mongodb.DBObject =
/* { "foo" : "bar" , "x" : "y" , "pie" : 3.14 ,
 "spam" : "eggs" , "mmm" : "bacon"} */

Being a builder - you must call result to get a DBObject. You cannot pass the builder instance around and treat it like a DBObject. I find these to be the most effective, Scala-friendly ways to create new Mongo objects. You’ll also find that despite the fact that these are com.mongodb.DBObject instances now, they provide a Scala Map interface via implicits. For example, one can put a value to newObj via +=:

newObj += "OMG" -> "Ponies!"
// com.mongodb.casbah.MongoDBObject =
// Map((foo,bar), (x,y), (pie,3.14), (spam,eggs), (mmm,bacon), (OMG,Ponies!))
newObj += "x" -> "z"
// com.mongodb.casbah.MongoDBObject =
// Map((foo,bar), (x,z), (pie,3.14), (spam,eggs), (mmm,bacon), (OMG,Ponies!))

Note that last - as one would expect with Scala’s Mutable Map, a put on an existing value updates it in place. The first statement adds a new value. We can also speak to the DBObject as if it’s a Map, for example, to get a value. As MongoDB’s DBObject always stores Object (or, in Scala terms AnyRef - you can always force boxing of AnyVal primitives with an 5.asInstanceOf[AnyRef]), you are going to want to cast the retrieved value:

// apply returns AnyRef
val x = newObj("OMG")
/* x: AnyRef = Ponies */

// Can't put AnyRef in a String
val y: String = newObj("OMG")
/* error: type mismatch;
 found : AnyRef
 required: String
*/

/Casbah provides two methods to help automatically infer a type from you however — `as[A]` which is the typed equivalent of `apply`, and `getAs[A]` which is the typed equivalent of `get` returns `Option[A]`/
These functions are available on ANY DBObject — not just ones you created through the MongoDBObject function (There is an implicit conversion loaded that can Pimp any DBObject as MongoDBObject. You can also use the standard nullsafe ‘I want an option’ functionality. However, due to a conflict in DBObject you need to invoke getAs - get invokes the base DBObject java method. This cannot currently infer type, but requires you to pass it explicitly:

val foo = newObj.getAs[String]("foo")
/* foo: Option[String] = Some(bar) */
val omgWtf = newObj.getAs[String]("OMGWTF")
/* omgWtf: Option[String] = None */
val omgWtfFail = newObj.getOrElse("OMGWTF",
 throw new Exception("OMG! WTF? BBQ!"))
/* java.lang.Exception: OMG! WTF? BBQ! */
// Or you can use the chain ops available on Option
val omgWtfFailChain = newObj.getAs[String]("OMGWTF") orElse (throw new Exception("Chain Fail."))
/* java.lang.Exception: Chain Fail. */

2.2.4.1. Combining Multiple DBObjects

It’s possible additionally to join multiple DBObjects together:

val obj2 = MongoDBObject("n" -> "212")
val z = newObj ++ obj2
/* z: scala.collection.mutable.Map[String,java.lang.Object] =
 Map((foo,bar), (mmm,bacon), (spam,eggs), (pie,3.14), (n,212), (x,y)) */
val zCast: DBObject = newObj ++ obj2
/* zCast: com.mongodb.casbah.Imports.DBObject =
 { "foo" : "bar" , "mmm" : "bacon" , "spam" : "eggs" , "pie" : 3.14 , "n" : "212" , "OMG" : "Ponies!" , "x" : "y"} */

Due to some corners in Scala’s Map traits some base methods return Map instead of the more appropriate this.type, and you’ll need to cast to DBObject explicitly. However, many of the Map methods don’t explicitly do the “OH I’m a DBObject” work for you - in fact, you could put a DBObject on one side and a Map on the other. But all Map instances can be cast as a DBObject either explicitly, or with an asDBObject call:

z.asDBObject
// com.mongodb.DBObject =
/* { "foo" : "bar" , "mmm" : "bacon" ,
 "spam" : "eggs" , "pie" : 3.14 ,
 "n" : "212" , "x" : "y"}
*/

val zDBObj: DBObject = z
// zDBObj: com.mongodb.casbah.Imports.DBObject =
/* { "foo" : "bar" , "mmm" : "bacon" ,
 "spam" : "eggs" , "pie" : 3.14 ,
 "n" : "212" , "x" : "y"}
 */

This pretty much covers working sanely from Scala with Mongo’s DBObject; from here you should be able to work out the rest yourself... from Scala’s side it’s just a scala.collection.mutable.Map[String, AnyRef] [http://www.scala-lang.org/docu/files/api/scala/collection/mutable/Map.html]. Implicits are hard - let’s go querying!

2.2.5. MongoDBList - Mongo-friendly List implementation

While Scala’s builtin list and sequence types can be serialized to MongoDB, in some cases (especially with Casbah’s DSL) it is easier to
work with MongoDBList, which is built for creating valid Mongo lists. MongoDBList, like MongoDBObject, follows the Scala 2.8 collections pattern. It provides an object constructor as well as a builder:

val builder = MongoDBList.newBuilder
builder += "foo"
builder += "bar"
builder += "x"
builder += "y"
val newLst = builder.result
/* newLst: com.mongodb.BasicDBList = ["foo" , "bar" , "x" , "y"] */

Apart from that it’s a pretty standard Scala list.

2.2.6. Querying with Casbah

I’m not going to wax lengthily and philosophically on the insertion of data; if you need a bit more guidance you should take a look at the MongoDB Tutorial [http://www.mongodb.org/display/DOCS/Tutorial]. We’ll cover updates and such in a bit, but let’s insert a few items just to get started with. It should be pretty straightforward:

val mongoColl = MongoConnection()("casbah_test")("test_data")
val user1 = MongoDBObject("user" -> "bwmcadams",
 "email" -> "~~brendan~~<AT>10genDOTcom")
val user2 = MongoDBObject("user" -> "someOtherUser")
mongoColl += user1
mongoColl += user2
mongoColl.find()
// com.mongodb.casbah.MongoCursor =
// MongoCursor{Iterator[DBObject] with 2 objects.}

for { x <- mongoColl} yield x
/* Iterable[com.mongodb.DBObject] = List(
 { "_id" : { "$oid" : "4c3e2bec521142c87cc10fff"} ,
 "user" : "bwmcadams" ,
 "email" : "~~brendan~~<AT>10genDOTcom"},
 { "_id" : { "$oid" : "4c3e2bec521142c87dc10fff"} ,
 "user" : "someOtherUser"}
) */

As we mentioned in passing before, you can get a cursor back explicitly via find, or treat the MongoCollection object just like a monad. For now, you need to use find to get a true query, but it returns an Iterator[DBObject] — which can also be handled monadically.

If you wanted to go in and find a particular item, it works much as you’d expect from the Java driver:

val q = MongoDBObject("user" -> "someOtherUser")
val cursor = mongoColl.find(q)
// cursor: com.mongodb.casbah.MongoCursor =
// MongoCursor{Iterator[DBObject] with 1 objects.}

val user = mongoColl.findOne(q)
// user: Option[com.mongodb.DBObject] =
/* Some({ "_id" : { "$oid" : "4c3e2bec521142c87dc10fff"} ,
 "user" : "someOtherUser"}) */

The former case returns a Cursor with 1 item - the latter, being a findOne, gives us just the row that matches. We use Option[_] for findOne for protection from passing null around (I hate null) - If it doesn’t find anything, findOne returns None. A clever hack might be:

mongoColl.findOne(q).foreach { x =>
 // do some work if you found the user...
 println("Found a user! %s".format(x("user")))
}

You can also limit the fields returned, etc just like with the Java driver. For example, if we wanted to see all the users,
retrieving just the username:

val q = MongoDBObject.empty
val fields = MongoDBObject("user" -> 1)
for (x <- mongoColl.find(q, fields)) println(x)
/* { "_id" : { "$oid" : "4d190356b9d8ba42efa80898"} , "user" : "bwmcadams"}
 { "_id" : { "$oid" : "4d190356b9d8ba42abc1a80898"} , "user" : "someOtherUser"} */

As is standard with MongoDB, you always get back the _id field, whether you want it or not. You may also note one other “Scala 2.8” collection feature above - empty. MongoDBObject.empty will always give you back a... (you guessed it!) empty DBObject. This tends to be useful working with MongoDB with certain tasks such as an empty query (all entries) with limited fields.

2.2.6.1. Fluid Querying with Casbah’s DSL

There’s one last big feature you should be familiar with to get the most out of Casbah: fluid query syntax. Casbah allows you in many cases to construct DBObjects on the fly using MongoDB query operators. If we wanted to find all of the entries which had an email address defined we can use $exists:

val q = "email" $exists true
// q: (String, com.mongodb.DBObject) =
// (email,{ "$exists" : true})
val users = for (x <- mongoColl.find(q)) yield x
assert(users.size == 1)

Unless you messed with the sample data we’ve been assembling thus far, that assertion should pass. $exists is a MongoDB Query Expression Operator [http://www.mongodb.org/display/DOCS/Advanced+Queries] designed to let you specify that the field must exist. This is obviously useful in a schemaless setup - we didn’t specify an email address for one of our two users.

	That said, the use of "email" $exists true as bareword code which just “worked” as a Mongo DBObject shouldn’t go without comment. Casbah provides a powerful fluid query syntax to allow you to operate with MongoDB much like you’d expect to work in the JavaScript shell. We drop much of the excess nested object syntax to simplify your code. I find that the use of these expression operators lets me rapidly put queries together that closely match how I’d work with MongoDB in Javascript or Python. Most of the MongoDB Query Expression Operators [http://www.mongodb.org/display/DOCS/Advanced+Queries] are supported (The exceptions being new ones I haven’t added support yet through indolence). There are two “Essential” types of Query Operators from the standpoint of Casbah:

	
	“Bareword” Query Operators

	“Core” Query Operators

	These are defined in query/BarewordOperators.scala` and query/CoreOperators.scala, respectively. A Bareword query operator is one which doesn’t need to be anchored by anything on the left side - you can start your MongoDB Query with it. A “Core” operator requires a seed, such as a field name, on it’s left to start. They’re logically separated so you can’t use a “Core” operator by itself. The currently supported Bareword Operators are:

	
	$set [http://www.mongodb.org/display/DOCS/Updating#Updating-%24set] - $set ("foo" -> 5, "bar" -> 28) // DBObject = { "$set" : { "foo" : 5 , "bar" : 28}}

	$unset [http://www.mongodb.org/display/DOCS/Updating#Updating-%24unset] - $unset ("foo", "bar") // DBObject = { "$unset" : { "foo" : 1 , "bar" : 1}}

	$inc [http://www.mongodb.org/display/DOCS/Updating#Updating-%24inc] - $inc ("foo" -> 5.0, "bar" -> 1.6) // DBObject = { "$inc" : { "foo" : 5.0 , "bar" : 1.6}} (NOTE: Pick a single numeric type and stick with it or the setup fails.)

	And the so-called Array Operators [http://www.mongodb.org/display/DOCS/Updating]: $push, pushAll, $addToSet, $pop, $pull, and $pullAll

There is solid ScalaDoc for each operator. All of these can be chained inside a larger query as well. The “Core” operators are the ones you’re more likely to encounter regularly (These are doced as well) and all of MongoDB’s current operators with the exception of $or and $type are supported (and tested). If you wanted to find all of the users whose username is not bwmcadams:

mongoColl.findOne("user" $ne "bwmcadams")
/* Option[com.mongodb.DBObject] =
 Some({ "_id" : { "$oid" : "4c3e2bec521142c87dc10fff"} ,
 "user" : "someOtherUser"})
*/

You also can chain operators for an “and” type query... I often find myself looking for ranges of value. This is easily accomplished through chaining:

val rangeColl = mongoConn("casbah_test")("rangeTests")
rangeColl += MongoDBObject("foo" -> 5)
rangeColl += MongoDBObject("foo" -> 30)
rangeColl += MongoDBObject("foo" -> 35)
rangeColl += MongoDBObject("foo" -> 50)
rangeColl += MongoDBObject("foo" -> 60)
rangeColl += MongoDBObject("foo" -> 75)
rangeColl.find("foo" $lt 50 $gt 5)
// com.mongodb.casbah.MongoCursor =
// MongoCursor{Iterator[DBObject] with 2 objects.}
for (x <- rangeColl.find("foo" $lt 50 $gt 5)) println(x)
// { "_id" : { "$oid" : "4c42426f30daeca8efe48de8"} , "foo" : 30}
// { "_id" : { "$oid" : "4c424bca9130daeca8f0e48de8"} , "foo" : 35}
for (x <- rangeColl.find("foo" $lte 50 $gt 5)) println(x)
// { "_id" : { "$oid" : "4c42426f30daeca8efe48de8"} , "foo" : 30}
// { "_id" : { "$oid" : "4c4249e0a130daeca8f0e48de8"} , "foo" : 35}
// { "_id" : { "$oid" : "4c42427330daeca8f1e48de8"} , "foo" : 50}

You can get the idea pretty quickly that with these “core” operators you can do some pretty fantastic stuff. What if I want fluidity on multiple fields? In that case, use the ++ additivity operator to combine multiple blocks.:

val q: DBObject = ("foo" $lt 50 $gt 5) ++ ("bar" $gte 9)
/* com.mongodb.DBObject =
 { "foo" : { "$lt" : 50 , "$gt" : 5} ,
 "bar" : { "$gte" : 9}} */

Just remember that when you call ++ with DBObjects you get a Map instance back and you’ll need to cast it.

If you really feel the need to use ++ with a mix of DSL and bare matches, we provide additive support for <key> -> <value> Tuple pairs. You should make the query operator calls first:

val qMix = ("baz" -> 5) ++ ("foo" $gte 5) ++ ("x" -> "y")
/* error: value ++ is not a member of (java.lang.String, Int)
 val qMix = ("baz" -> 5) ++ ("foo" $gte 5) ++ ("x" -> "y") */

The operator is chained against the result of DSL operators (which incidentally properly return a DBObject):

val qMix = ("foo" $gte 5) ++ ("baz" -> 5) ++ ("x" -> "y")
/* qMix: com.mongodb.casbah.commons.Imports.DBObject =
 { "foo" : { "$gte" : 5} , "baz" : 5 , "x" : "y"} */

val qMix2 = ("foo" $gte 5 $lte 10) ++ ("baz" -> 5) ++ ("x" -> "y") ++ ("n" -> "r")
/* qMix2: com.mongodb.casbah.commons.Imports.DBObject =
 { "foo" : { "$gte" : 5 , "$lte" : 10} , "baz" : 5 , "n" : "r" , "x" : "y"} */

If you’d like to see all the possible query operators, I recommend you review query/CoreOperators.scala.

2.2.7. GridFS with Casbah

Casbah contains a few wrappers to GridFS [http://www.mongodb.org/display/DOCS/GridFS] to make it act more like Scala, and favor a Loan style pattern which automatically saves for you once you’re done (Given a curried function).

MongoDB’s GridFS system allows you to store files within MongoDB - MongoDB chunks the file in a way that allows massive scalability (I’ve been told the maximum file size is 16 Exabytes). Casbah’s Scala version of GridFS supports creating files using Array[Byte], java.io.File and java.io.InputStream (I had some problems with scala.io.Source and it’s currently disabled). GridFS works in terms of buckets. A bucket is a base collection name, and creates two actual collections: <bucket>.files and <bucket>.chunks. files contains the object metadata, while chunks contains the actual binary chunks of the files. If you’re interested, you can learn more in the GridFS Specification [http://www.mongodb.org/display/DOCS/GridFS+Specification]. To work with GridFS you need to provide a connection object, and define the bucket name (without .chunks/.files); however, by default (AKA if you don’t specify a bucket) MongoDB uses a bucket called “fs”.

Because many projects don’t use GridFS at all, we don’t import it by default. If you want to use GridFS you’ll need to import our GridFS objects:

import com.mongodb.casbah.gridfs.Imports._

Then create your new GridFS handle:

val gridfs = GridFS(mongoConn) // creates a GridFS handle on ``fs``

The gridfs object is very similar to a MongoCollection - it has find & findOne methods and is Iterable. We’re going to pull some sample code from the GridFS unit test.

Creating a new file with the loan style is easy:

val logo = new FileInputStream("casbah-gridfs/src/test/resources/powered_by_mongo.png")
gridfs(logo) { fh =>
 fh.filename = "powered_by_mongo.png"
 fh.contentType = "image/png"
}

We have defined a new file in GridFS from the FileInputStream, set it’s filename and content type and automatically saved it. The expected function type of the apply method is type FileWriteOp = GridFSInputFile => Unit. One Note: Due to hardcoding in the Java GridFS driver the Joda Time serialization hooks break hard with GridFS. It tries to explicitly cast certain date fields as a java.util.Date and fails miserably. To that end, on all find ops we explicitly unload the Joda Time deserializers and reload them when we’re done (if they were loaded before we started). This allows GridFS to always work but MAY cause thread safety issues - e.g. if you have another non-GridFS read happening at the same time in another thread at the same time, it may fail to deserialize BSON Dates as Joda DateTime - and blow up. Be careful — generally we don’t recommend mixing Joda Time and GridFS in the same JVM at the moment.

Finally, before I leave you to explore on your own, I’ll show you retrieving a file. It should look familiar:

val file = gridfs.findOne("powered_by_mongo.png")

find and findOne can take DBObject like on Collection objects, but you can also pass a filename as a String. It is possible to have multiple files with the same filename as far as I know, so findOne would only return the first it found. The returned object is not a DBObject - it is a GridFSDBFile. From here, you should be able to explore and have fun on your own - stay out of trouble!

 Copyright 2010, 2011 10gen, Inc..
 Created using Sphinx 1.0.5.

 _static/plus.png

_static/minus.png

_static/logo-mongodb.png
mongoDB

_static/file.png

genindex.html

 Navigation

 		
 index

 		Casbah (MongoDB + Scala Toolkit Documentation v2.1.5 documentation »

 Index

 © Copyright 2010, 2011 10gen, Inc..
 Created using Sphinx 1.0.5.

search.html

 Navigation

 		
 index

 		Casbah (MongoDB + Scala Toolkit Documentation v2.1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, 2011 10gen, Inc..
 Created using Sphinx 1.0.5.

